FRACTALES, UNA GEOMETRIA NATURAL

La geometría tan intuitiva que nos enseñan en la escuela, basada en líneas, puntos y superficies supone, en realidad, un gran esfuerzo de abstracción porque estos elementos idealizados no existen en el mundo cotidiano. Una línea real o una superficie están llenas de irregularidades que pasamos por alto para abstraer su esencia y plasmarla en conceptos más sencillos como recta y plano.


Con los fractales, en cierta manera, deshacemos esa abstracción y nos acercamos un poco más al objeto real. Benoït Mandelbrot utiliza el ejemplo sencillo de un objeto real, como son las costas de los países, para aproximarnos a los fractales. Son líneas quebradas que siguen teniendo un aspecto parecido cuando cambiamos de escala. Precisamente estas dos propiedades son las que definen a un fractal: discontinuidad (rotura, fractura, de ahí su nombre) y autosemejanza con el cambio de escala. Medimos su grado de fractura e irregularidad con un simple número que llamamos dimensión fractal.

Repasando intuitivamente el concepto de dimensión, observamos que un punto no tiene medida (dimensión cero); a una recta la medimos en metros o centímetros lineales, lo que significa asignarle dimensión uno (una sola medida: largo); a una superficie la debemos medir en metros o centímetros cuadrados (dimensión dos: largo por ancho) y a un volumen lo medimos en metros o centímetros cúbicos (dimensión tres: largo por ancho por alto). Un fractal, generalmente, tendrá una dimensión (su dimensión fractal) que estará entre cero y uno, entre uno y dos o entre dos y tres.


Supongamos el caso más sencillo, una recta fractal representada por un hilo arrugado, e imaginemos que tiene dimensión fractal 1,25. Si otro hilo tiene dimensión fractal 1,35, la simple comparación de sus dimensiones fractales supone que este segundo hilo está más arrugado que el primero, presenta más irregularidades. La parte entera de la dimensión fractal (en este caso 1) nos está informando que el objeto con el que tratamos es una recta, la parte fraccionaria nos mide su grado de irregularidad.

La dimensión fractal también da la capacidad que tiene el objeto de ocupar el espacio. El hilo con dimensión fractal 1,35 es capaz de llenar el plano mejor que el de dimensión 1,25. De hecho, si seguimos arrugándolo más aumentaremos su dimensión fractal y cuando esté cercana a 2 habremos conseguido llenar, casi por completo, una superficie con el hilo. Un fractal clásico de este tipo es la llamada curva de Peano.


Los fractales son objetos esencialmente sencillos, se generan fácilmente por ordenador. Mediante muy pocas órdenes de programación, y a partir de un número mínimo de datos, se crean verdaderas maravillas de una riqueza y complejidad extraordinarias. El fractal de Mandelbrot es un ejemplo. Conforme intentamos ampliar, con medios informáticos, cualquiera de sus partes nos encontramos con un nuevo paisaje similar al original pero con nuevos y sorprendentes detalles. Podemos seguir así cuanto deseemos y nos permita la potencia de nuestro ordenador, se nos seguirá mostrando un nuevo mundo fantástico, que nunca llega a repetirse, en cada nueva ampliación. Un mundo surgido casi de la nada, de una sencilla expresión que se encadena y realimenta con nuevos datos.


Valor posterior = (valor anterior)2 + constante (Con una condición restrictiva).


La observación de estos fractales creados por ordenador, nos recuerda siempre a algún objeto natural desconocido pero cercano, posiblemente, porque esa economía de medios para lograr complejidad es una característica muy propia de la Naturaleza. Es la estrategia adoptada para lograr la mejor distribución de los vasos sanguíneos por todo el cuerpo, la disposición óptima del ramaje de los árboles o de los pliegues del cerebro para conseguir la mayor superficie en el mínimo espacio.

Vacío cuantico, vacío fractal

El vacío estable y absoluto de Newton, con trayectorias continuas y determinadas, ha dejado paso al vacío cuántico asociado a unas extrañas trayectorias (*) discontinuas y fracturadas, llamadas por ello trayectorias fractales ( no son propiamente trayectorias). La existencia del cuanto de acción o constante de Planck ( se llama acción al producto de una energía por un tiempo ), base de la física cuántica, es la causa de ese cambio fundamental, y de otros muchos, con profundas consecuencias. Mediante la geometría fractal, este nuevo marco nos ofrece nuevas e interesantes perspectivas.


La existencia del cuanto de acción supone, realmente, la desaparición del vacío como tal. La mínima energía posible en el espacio (fluctuaciones cuánticas) deja de ser cero para pasar a depender del inverso de la distancia considerada. A la menor distancia posible (longitud de Planck = 10-35 metros) , se le asocia una energía considerable, equivalente a una masa de 0,00002 gramos, y si mantuviéramos la misma relación, la masa correspondiente a un metro sería del orden de 1,2 x1024 toneladas. Pero la propia existencia del mínimo cuanto de acción - principio de incertidumbre - determina que las fluctuaciones de energía del vacío queden acotadas, y sean cada vez menores conforme aumenta la distancia. Para las distancias macroscópicas, cotidianas para nosotros, son prácticamente nulas.

El vacío plano y estable ha dejado paso a un vacío cuántico modulado por sus fluctuaciones de energía que le dotan de una estructura fractal, discontinua. Dicha estructura, aparentemente extraña en la teoría, es por el contrario de lo más común en el mundo real. Cualquier superficie , por ejemplo, por lisa que nos parezca, al examinarla con un aumento progresivo la observaremos cada vez con mayores imperfecciones, hendiduras y discontinuidades. Ocurre con cualquier objeto del mundo real, la esfera, el cubo, o la línea perfecta no existen . No dejan de ser simplificaciones convenientes a las que asociamos conceptos sencillos y fáciles de manipular. Sin embargo las simplificaciones nos pueden ocultar detalles decisivos.

Supongamos que queremos recorrer, a pie, la distancia entre dos puntos determinados. Si la medimos sobre un plano, en línea recta, encontraremos una distancia determinada que se verá ampliamente superada cuando hagamos el trayecto en la realidad. Tendremos que subir, bajar, desviarnos un montón de veces de la trayectoria teórica preestablecida sobre el plano.En la realidad, habremos seguido una trayectoria fractal. Si ese mismo viaje lo hubiera hecho una hormiga, su trayectoria habría sido mucho más irregular que la nuestra y la distancia a recorrer mucho mayor , porque el paso de la hormiga es considerablemente menor que el humano.

Dimensión fractal = dimensión topológica + factor dimensional

( El factor dimensional, siempre positivo, es tanto mayor cuanto más irregular es el fractal)


En una línea perfecta eso no ocurre, pero en una trayectoria fractal si. Una línea teórica tiene dimensión topológica o aparente igual a la unidad, pero para una línea fractal existe un factor dimensional positivo , que se suma a la dimensión aparente para constituir la que llamamos dimensión fractal. Conforme sea más discontinuo e irregular un fractal mayor será este factor y , por tanto, mayor su dimensión fractal.


(En la figura ( representación del vacío cuántico), los trazos más anchos se corresponden con fermiones( quarks, electrones...) y sus antipartículas, mientras que los trazos más finos corresponden a bosones (gluones, fotones, W+, W-, Z0,...). En lo concerniente al color de los quarks y gluones, se corresponden con la carga de color de los mismos mientras que las partículas insensibles a la interacción fuerte aparecen en blanco o gris.)


(*) De hecho, no son propiamente trayectorias, las trayectorias clásicas no existen en mecánica cuántica .Concretamente, su dimensión fractal es 2 , pues por curioso que parezca existen fractales con dimensión entera.

Fuente: http://labellateoria.blogspot.com

No hay comentarios: